Extensions 1→N→G→Q→1 with N=C66 and Q=C22

Direct product G=N×Q with N=C66 and Q=C22
dρLabelID
C22×C66264C2^2xC66264,39

Semidirect products G=N:Q with N=C66 and Q=C22
extensionφ:Q→Aut NdρLabelID
C66⋊C22 = C2×S3×D11φ: C22/C1C22 ⊆ Aut C66664+C66:C2^2264,34
C662C22 = C22×D33φ: C22/C2C2 ⊆ Aut C66132C66:2C2^2264,38
C663C22 = C2×C6×D11φ: C22/C2C2 ⊆ Aut C66132C66:3C2^2264,36
C664C22 = S3×C2×C22φ: C22/C2C2 ⊆ Aut C66132C66:4C2^2264,37

Non-split extensions G=N.Q with N=C66 and Q=C22
extensionφ:Q→Aut NdρLabelID
C66.1C22 = Dic3×D11φ: C22/C1C22 ⊆ Aut C661324-C66.1C2^2264,5
C66.2C22 = S3×Dic11φ: C22/C1C22 ⊆ Aut C661324-C66.2C2^2264,6
C66.3C22 = D33⋊C4φ: C22/C1C22 ⊆ Aut C661324+C66.3C2^2264,7
C66.4C22 = C33⋊D4φ: C22/C1C22 ⊆ Aut C661324-C66.4C2^2264,8
C66.5C22 = C3⋊D44φ: C22/C1C22 ⊆ Aut C661324+C66.5C2^2264,9
C66.6C22 = C11⋊D12φ: C22/C1C22 ⊆ Aut C661324+C66.6C2^2264,10
C66.7C22 = C33⋊Q8φ: C22/C1C22 ⊆ Aut C662644-C66.7C2^2264,11
C66.8C22 = Dic66φ: C22/C2C2 ⊆ Aut C662642-C66.8C2^2264,23
C66.9C22 = C4×D33φ: C22/C2C2 ⊆ Aut C661322C66.9C2^2264,24
C66.10C22 = D132φ: C22/C2C2 ⊆ Aut C661322+C66.10C2^2264,25
C66.11C22 = C2×Dic33φ: C22/C2C2 ⊆ Aut C66264C66.11C2^2264,26
C66.12C22 = C337D4φ: C22/C2C2 ⊆ Aut C661322C66.12C2^2264,27
C66.13C22 = C3×Dic22φ: C22/C2C2 ⊆ Aut C662642C66.13C2^2264,13
C66.14C22 = C12×D11φ: C22/C2C2 ⊆ Aut C661322C66.14C2^2264,14
C66.15C22 = C3×D44φ: C22/C2C2 ⊆ Aut C661322C66.15C2^2264,15
C66.16C22 = C6×Dic11φ: C22/C2C2 ⊆ Aut C66264C66.16C2^2264,16
C66.17C22 = C3×C11⋊D4φ: C22/C2C2 ⊆ Aut C661322C66.17C2^2264,17
C66.18C22 = C11×Dic6φ: C22/C2C2 ⊆ Aut C662642C66.18C2^2264,18
C66.19C22 = S3×C44φ: C22/C2C2 ⊆ Aut C661322C66.19C2^2264,19
C66.20C22 = C11×D12φ: C22/C2C2 ⊆ Aut C661322C66.20C2^2264,20
C66.21C22 = Dic3×C22φ: C22/C2C2 ⊆ Aut C66264C66.21C2^2264,21
C66.22C22 = C11×C3⋊D4φ: C22/C2C2 ⊆ Aut C661322C66.22C2^2264,22
C66.23C22 = D4×C33central extension (φ=1)1322C66.23C2^2264,29
C66.24C22 = Q8×C33central extension (φ=1)2642C66.24C2^2264,30

׿
×
𝔽